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This paper advances the theoretical basis and application of dynamic gain-scheduled control, a novel method for

the control of nonlinear systems, to an aircraft model. Extensions of this method involving multivariable gain

scheduling and continuation tailoring are developed. The idea behind thismethod is to schedule the control law gains

with a fast-varying state rather thanwith a slow-varying state or an input parameter. This approach is advantageous

because it is then possible to schedule the gainswith a state that is dominant in themode thatwe aremost interested in

controlling. The use of this type of gain scheduling is shown to improve the transient response of the aircraft model

when stepping between trim conditions and to reduce control surface movement, thus reducing the potential for

saturation problems. Hidden coupling terms that introduce unwanted dynamics when scheduling gains with a fast

state (rather than the input design parameter) are eliminated directly by applying a transformation to the classical

parameter-scheduled gain distributions that are calculated using optimal control theory. A highly nonlinear

unmanned combat air vehicle model is used to demonstrate the design process.

Nomenclature

K = static gain
Kff = feedforward gain schedule
Kx = static gain on x
p = body axis roll rate
pdem = demanded body axis roll rate
q = body axis pitch rate
qdem = demanded body axis pitch rate
r = body axis yaw rate
�r = reference input
u = control input
x = state
� = angle of incidence
�dem = demanded angle of incidence
�int = � command augmentation system integrator state
� = angle of sideslip
�dem = demanded angle of sideslip
�int = � command augmentation system integrator state
�e = elevator actuator position
�edem = demanded elevator actuator position
�yaw = yaw thrust vectoring effector
� = continuation parameter
� = dynamic gain
�x = dynamic gain on x

I. Introduction

G AIN scheduling is defined as the process of subdividing a
nonlinear control problem into a series of linear subproblems,

designing controllers to suit each linear design condition, and
reconstructing the resultant discrete solution into a single continuous
controller [1]. This divide-and-conquer approach enables well-
established linear design methods to be applied to nonlinear
problems. Continuity of the controller with linear design methods is
also desirable because they are often the basis of safety certification
methods.

There has been an upsurge in gain-scheduling research in the last
15 years. Excellent reviews of much of this work can be found in the
survey papers by Rugh and Shamma [2] and Leith and Leithead [3].
The aim of this work has been to relax the restrictions associated with
classical gain-scheduling approaches, in particular (according to
[3]): the restriction to near equilibrium operation that arises from the
use of only equilibrium information (namely, the equilibrium
linearizations of the plant) for control design purposes; and the slow
variation conditions associated with ensuring that the overall system
does not evolve between operating regions in too rapid amanner. The
former of these restrictions can be addressed using fuzzy/neural
approaches, linear/quasi-linear parameter-varying (LPV) formula-
tions and off-equilibrium linearization [3]. (It should be noted that
this restriction is not particular to gain scheduling, but applies to
linear models in general). The work presented here focuses on the
relaxation of the latter restriction by linearization-based gain sched-
uling using the novel method of dynamic gain scheduling (DGS).

Apart from linearization-based approaches, the other focus of
gain-scheduled controller design research in recent years has been on
LPV approaches. For example, Apkarian et al. [4] have applied LPV
approaches to the control of a missile model and show that tight
robustness and performance specifications can be maintained even
for rapidly changing parameters. An LPV H1 formulation has also
been shown to be very suitable for robust control in practice
following flight testing on the vectored-thrust aircraft advanced
control (VAAC) Harrier [5]. To retain a reasonable focus to the
paper, LPV gain-scheduling approaches (which are less strongly
based on divide-and-conquer ideas) are not considered, though it
should be noted that by addressing time-varying parameters during
the design process itself (as opposed to post-design analysis) LPV
approaches have the potential to alleviate the slow variation
restriction as well.

This paper addresses gain-scheduled control via the linearization-
based method of DGS, which has been defined as [1] “. . . scheduling
gains with one (ormore) of the system states while accounting for the
‘hidden coupling terms’ ensures that the controller gains are always
set for the current state-space location and therefore produce a near-
optimal response.”

Hidden coupling terms (also known as fictitious gains or hidden
loops) are additional terms in the actual linearized controller when
compared with the designed linear controller [6,7]. Therefore, they
alter the intended stability of the closed-loop system and could cause
instability. Potential ways of dealing with these terms have been
discussed previously in the literature [6–8]. Our approach offers a
more general means of dealingwith these terms by applying a simple
numerical transformation to the classically designed gain-scheduled
controller.
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The classical gains are calculated as a series of equilibrium
linearizations, hence they should be scheduled with the variable that
parameterized the equilibrium points. This parameter could be either
a control input or a slowly-varying state such as velocity. It would be
more desirable to schedule the gains with a fast-varying state,
because it is the fast modes that dominate the aircraft response (slow
modes can be easily damped out by the pilot or automatic control
system). However, this would have an effect on the closed-loop
stability, because state scheduling (as opposed to parameter
scheduling) introduces additional terms into the elements of the
Jacobian matrix. It is these additional terms that are referred to as
hidden coupling terms.Ourmethod accounts for these terms by using
dynamic gain schedules that are obtained by applying a
transformation to the classical (static) gain schedules.

This type of controller is particularly useful when rapid control
inputs are demanded. These could occur, for example, when a pilot is
carrying out an evasive maneuver or when the higher level mission
controller of a semiautonomous unmanned combat air vehicle
(UCAV) requires a sudden change in trajectory that is not restricted
by the usual g-limits of piloted aircraft.

The method is applied to the ICE 101-TV [9,10], which was
designed by Lockheed Martin Tactical Aircraft Systems, Inc. as part
of the innovative control effectors (ICE) program. Its open-loop
flight envelope is highly nonlinear, hence the closed-loop gain
variation allows for a proper assessment of this control method. It is a
tailless delta-wing configuration with a 65 deg leading edge sweep
and a sawtooth trailing edge. It hasfive aerodynamic control surfaces
as shown in Fig. 1 [all-moving wing tips (AMT), pitch flaps (PF),
leading edge flaps (LEF), elevons (ELEV), and spoiler slot deflectors
(SSD)] and a pitch/yaw thrust vectoring capability. (Note that the
effector post-fix act refers to the actuator that is associated with it, for
example, PFact� pitch flap actuator, and the L post-fix refers to the
left (port) element of the effector, for example, AMTL� left AMT.)
Although the ICE was not specifically designed to be unmanned, its
configuration is similar to some current UCAVs [11] and is therefore
suitable for manned or unmanned research studies.

Results are presented for a second-order (� and q) longitudinal
model with an �-demand (�dem) stability and command aug-
mentation system (SCAS), and two fifth-order (�; �; p; q, and r)
longitudinal/lateral models, one with a �-demand (�dem) SCAS and
the other with both a �dem and an �dem SCAS. The trim points and
static gains are determined together within a continuation design
framework [12] using LQR [13,14]. This has the advantage of giving
the user explicit knowledge of the closed-loop dynamics throughout
parameter space so that a strong link with the underlying physics is
retained. State-scheduled dynamic gains are then calculated directly
from these parameter-scheduled static gains. Feedfoward gain
schedules are also used to compensate for a byproduct of the
transformation to dynamic gain schedules when large values of the
reference input are encountered. This schedule will be created using
continuation tailoring (a subset of bifurcation tailoring that has

previously been applied to the control of highly nonlinear aircraft
[15,16]).

II. Methodology/Problem Definition

Following the methodology described in previous work [17] and
included here for clarity, first consider the nonlinear system:

_x� F�x; �� (1)

where

x 2 <n = state vector
� 2 <p = vector of parameters
F: <n�p ! <n = smooth nonlinear system

Fixing all elements in � apart from one, �

_x� f�x; �� (2)

where f : <n�1 ! <n is a nonlinear system. Adding a nonlinear
controller to the system, we obtain

_x� g�x; �; u� (3)

where u 2 <m is a vector of control inputs and g:<n�1�m ! <n is a
nonlinear system.

Linearizing with � fixed at an equilibrium point, we obtain

_̂x�Ax̂� Bû (4)

ŷ� Cx̂�Dû (5)

where x̂ and û are perturbations from the linearization point, and ŷ is
the output vector (also relative to the linearization point). Consider a
state-feedback scheme where u is considered in terms of x and an
appropriate feedback gain matrix K, giving the closed-loop system

_̂x�Ax̂� BKx̂�Aclx̂ (6)

The gain matrix can then be calculated from the preceding
linearization using any convenient method such as LQR,
eigenstructure assignment [16–20] or H1 [6,21]. This is done
quasicontinuously at trim points throughout the � range by
incorporating the linear controller design method within a con-
tinuation algorithmx (using the AUTO software [22], in this case).

A. Dynamic Gain Scheduling with the Feedback State

The gain matrices can vary considerably between points in state-
space for a highly nonlinear system, and so it is necessary to schedule
them against either x or � to maintain the desired control
performance.

It is desirable to schedule the gains with a state that is associated
with the dominant mode so that the gains can evolve sufficiently
quickly during a rapid maneuver. At subsonic speeds it might be
preferable to schedule an aircraft control system with angle of
incidence �, but in the transonic region it may be more advisable to
use the Mach number as the scheduling parameter. In effect, our
approach enables an increase in the choice of the scheduling signal,
depending on the flight regime.

However, scheduling against x leads to a problem as demonstrated
by the following simple example.

Let a second-order aircraft system in � and q (the pitch rate) with
state feedback on both states be represented by the following
equations of motion:

_�� f1��; q� (7)

Fig. 1 Schematic drawing of the ICE [9].

xContinuation methods enable the aircraft trim points to be traced out as a
function of a system parameter (such as center of gravity position or control
surface angle).
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_q� f2��; q� � K�� �r��� Kq� �r�q (8)

where �r is equal to � for all the cases considered in this paper.
The Jacobian J of this system has the form

J � �@ _�=@�� �@ _�=@q�
�@ _q=@�� �@ _q=@q�

� �
(9)

If the gains are scheduled with �r, then the terms in J become

@ _�=@�� @f1=@� (10)

@ _�=@q� @f1=@q (11)

@ _q=@�� �@f2=@�� � K�� �r� (12)

@ _q=@q� �@f2=@q� � Kq� �r� (13)

If, however, each gain is scheduled with its feedback state instead of
the reference input, that is, K���� and Kq�q�, then the terms in J
become

@ _�=@�� @f1=@� (14)

@ _�=@q� @f1=@q (15)

@ _q=@�� �@f2=@�� � K���� � �@K�=@��� (16)

@ _q=@q� �@f2=@q� � Kq�q� � �@Kq=@q�q (17)

The problem arises because when designing the controller, the
gains are calculated at specific reference points, that is, in a static
sense, @K�=@�� @Kq=@q� 0. When implemented, however, these
partial derivatives are not, in general, zero because � and q are
dynamically-varying states of the system.

Hence, scheduling against the feedback state rather than with the
reference input introduces coupling terms (between dependent and
independent schedule variables) that produce unwanted additional
dynamics: these are the aforementioned hidden coupling terms. Our
approach to minimizing the effect of the coupling terms is to define a
different set of gain schedules that retain the same eigenstructure as in
the design (static) situation at all reference (trim) conditions.

Therefore, the problem associated with gain scheduling against a
state x is to find a nonlinear gain matrix ��x�, such that the closed-
loop system has the same desired eigenstructure as a system that
schedules its gainsK� �r�with�. The solution to this problem is most
simply explained by example, by considering the following first-
order system:

_x� f�x; �� � u (18)

where x 2 <, u 2 <. Assume we wish to design two controllers of
the form u� K� �r�x and u� ��x�x by applying LQR to the
linearized model at a set of trimmed points. It has been shown in
previous work [1] that if the eigenstructures of the two closed-loop
systems are to be identical, then the two sets of gains K� �r� and ��x�
are related by the following equation:

K� �r� � �@�=@x�x� ��x� (19)

Therefore the dynamic gain schedule (DGS) is given by:

��x� �
�Z

K� �r� dx� c

�
=x (20)

where c is the constant of integration.k

From this point onwards, if the gains are scheduled with either the
reference input �r or a slowly-varying state, then they are referred to as
static gains K. If the gains are instead scheduled with a fast-varying
state, then they are referred to as dynamic gains �.

The transformation from static gain K to dynamic gain � can be
applied to any nth-order system, provided that each gain is only
scheduled against the state to which it is applied. If there is such
feedback on any state in any of the n equations, then the
transformation in Eq. (20) can be used to find ��x� from K� �r�. For
example,

_x 1 � f�x� � K1� �r�x1 � K2� �r�x2 (21)

can be used to get

_x 1 � f�x� � �1�x1�x1 � �2�x2�x2 (22)

In practice, K will be determined between a lower limit xl and an
upper limit xu, that is, even though it is defined as a function of �,
because each � has a corresponding equilibrium value of x, it is
effectively a function of trimmed x as well{:

K�xu�xu �
Z

xu

xl

K�x� dx� K�xl�xl (23)

The term K�xl�xl is a constant and is zero when the integration is
started from zero (i.e., xl � 0). Because we have been using � to
define a schedule that is a function of x, we define the state-scheduled
gain � as

��xu� �
�Z

xu

xl

K dx� ��xl�:xl
�
=xu (24)

K�x� has been found numerically from the continuation method, and
so ��xu� can be calculated via a numerical integration of K�x�;
trapezoidal integration was used in this work.

Dynamic state-scheduled gains directly account for the coupling
terms in the Jacobian matrix, as the DGS is obtained by applying a
transformation to the static gain schedule.

Therefore, for the system defined by Eqs. (7) and (8), the dynamic
gains can be related to the static gains by simply applying Eq. (19) in
the following way:

Kq � q�@�q=@q� � �q�q� (25)

K� � ��@��=@�� � ����� (26)

B. Dynamic Gain Scheduling with a State Other than

the Feedback State

It is sometimes not possible to convert a static gain schedule to a
DGS by simply applying Eq. (20), due to the numerics of the data; for
example, when the function relating the trim states x to the gainK is a
one-to-many function, or when the state does not go through zero, as
this prevents an initial condition for integration being determined
exactly. In fact, one of the advantages of the continuation-based
approach is that the nature of K throughout parameter space will be
immediately apparent. Schematic examples of these problematic
data trends are shown in Fig. 2. They are both one-to-many functions
for at least some of their state range x1 and x2. The second subplot is
additionally problematic, as it does not pass through x2 � 0 within
the given continuation parameter range. The constant of integration c

kThe static gains are calculated at each point along the trim branch. This
closed-loop trim branch yields a unique set of points (i.e., one set of gains at
each solution point). Hence, integration of K with respect to trimmed x
produces a unique curve.

{K is a function of�, and x is a function of�. The steady-state continuation
provides the link between the two, that is, betweenK and x at trim conditions
over a range of � inputs; hence, K�x� only has meaning for trim points.
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is equal to the product of � and x, but � is unknown before its
transformation from K. Hence, if the integration is started from 0,
then c is known. Its complexity also serves to demonstrate why a
piecewise transformation process was not attempted. A piecewise
process would involve the splitting of the one-to-many function into
a series of one-to-one or many-to-one functions, transforming each
individually, concatenating the resulting gains, and then necessarily
scheduling them with multiple parameters.

In such situations it is possible to schedule with a state other than
the feedback state, but the DGS must then be calculated using an
alternative transformation. This novel process is referred to as a
modified transformation and is best described by the following
example:

Consider a third-order closed-loop aircraft system (�, q, and �e),
where the elevator actuator transfer function relating its �e to its �edem
is modeled as a first-order lag of the form 30=�s� 30�:

_�� f1��; q; �e� (27)

_q� f2��; q; �e� (28)

_� e ��30�e � 30�K������ Kq���q� (29)

Now if state-scheduled dynamic gain feedback is required instead
of �-scheduled static gain feedback, then Eq. (29) is replaced by:

_� e ��30�e � 30�������� �q�q�q� (30)

and the standard transformations can be applied to get the dynamic
gains � from the static gains K, which are in this case the same as
those given in Eqs. (25) and (26).

This is referred to as a full dynamic gain schedule (F-DGS), that is,
all the system gains can be transformed with their associated
feedback state.

However, for example, if Kq cannot be transformed to �q using q
because of one of the previously mentioned numerical restrictions,

then the _�e equation may take the following form instead:

_� e ��30�� 30�������� �q���q� (31)

that is, �q scheduled with � instead of q (assuming that scheduling
with � is possible). Continuation gives the required relationships,
that is, the gains are calculated at each trim point so that they have a
set of trimmed states associated with them as well as the single input
parameter. The elements of the Jacobian matrix of the �-scheduled
system are then equated to those of the state-scheduled system:

@ _�e=@�� 30K� � 30

�
�� � �@��=@���� �@�q=@��q

�
(32)

@ _�e=@q� 30Kq � 30��q���� (33)

@ _�e=@�e ��30��30 (34)

Hence, the transformation set becomes

K� � ����� � �@��=@���� �@�q=@��q (35)

Kq � �q��� (36)

It is then possible to find �� using Eq. (20) because @�q=@� can be
determined numerically as a result of Eq. (36).

The benefits of this type of dynamic gain schedule will depend on
the system. In general, a better-performing system than the
parameter-scheduled one will result, but an inferior response when
compared with the conventional transformation is likely. The reason
for this lies in the inherent smoothing performed by the
transformation of a schedule from static to dynamic due to the
integration of the static gain schedule with respect to the feedback
state. This results in the magnitude of the feedback signal to the
actuator at off-trim points being less than it would have been
with the untransformed schedule, and so actuator movement is
reduced, leading to less dramatic transient motion. The modified
transformation will smooth at least one less schedule than the
conventional transformation, hence the system gains, although sche-
duled with a fast state and having the desired eigenvalues may retain
many large variations in the system gains with the scheduling state.

To distinguish this situation from the one in Sec. II.A the following
two types of DGS are defined:

1) Full dynamic gain schedule (F-DGS): a dynamic gain schedule
created by transforming a static gain schedule with the feedback
state.

2) Modified dynamic gain schedule (M-DGS): a dynamic gain
schedule created by transforming at least one static gain schedule
with a state other than the feedback state.

The implications of M-DGS in terms of response degradation
relative to F-DGS are discussed in Sec. V.

C. General Result for the Transformation of Static-to-Dynamic

Gain Schedules

Therefore, for a system of the form

_x1 � f1�x1 � � � xn�
_x2 � f2�x1 � � � xn�
..
.

_xn�1 � fn�1�x1 � � � xn�
_xn �� 30xn � 30�K1���x1 � � � � � Kn�1���xn�1�

(37)

the general transformation set is given by

Kai��� � �ai �ai� �
@�ai

@ai

ai �
Xbn
j�1

aflag

@�bj

@ai

bj

����
i�1;an

(38)

Kbi
��� � �bi

�aauxi
�ji�1;bn

(39)

where

a 2 <an = vector of feedback states that can be used to
schedule the associated feedback gain

b 2 <bn = vector of the remaining feedback states
aaux 2 <bn = vector of states against which �bi is scheduled

and where aflag is defined as

aflag �
�
1 ai � aauxj

0 ai ≠ aauxj

(40)

III. Linear Quadratic State-Feedback Regulation

Previous work on continuation-based state-feedback dynamic
gain scheduling [1,7] has exclusively used eigenstructure assignment
to design the parameter-scheduled gains from which the state-
scheduled gains are calculated. The eigenstructure was assigned in
order that the system just satisfied level 1 handling qualities, for

0

0

x
1

K
1

0
x

2

K
2

a) Example 1 b) Example 2

Fig. 2 Example problematic data trends.

1274 JONES ET AL.



example, the poles associatedwith the short periodmodewere placed
at �2	 2i. However, when the desired eigenstructure is not well
defined, such as with a UCAV where requirements on handling
qualities are not specified, the placing of the system poles to satisfy
piloted handling qualities might be inappropriate. It could result in
large feedback gains and, hence, in excessive effector deflections,
possibly leading to actuator saturation and an increase in the radar
cross-sectional signature. Amuch better way of selecting the closed-
loop gains would be to use an approach that optimizes the system for
the specific requirements of the given aircraft. LQR [14,23] is one
such method, and the intrinsic MATLAB function lqr was used to
calculate the controller for the work presented in this paper. Consider
the state-space system

_̂x�Ax̂�Bû (41)

ŷ� Cx̂�Dû (42)

The optimal control problem is to find a control vector u that drives
the initial state vector x�0� to the desired final state vector x�1�
while minimizing a performance index of the form

J �u� �
Z 1

0

g�x; u; t�dt (43)

The most useful functional form of this equation is a quadratic
performance index:

J �u� �
Z 1

0

�xTCTQCx� uTRu� dt (44)

where Q and R are weighting matrices that enable a tradeoff of
regulation performance [i.e., how fast x�t� goes to zero] and control
energy expenditure. For simplicity, the R matrix is set equal to the
identity matrix for all the work presented here.

For these investigative design purposes, the LQR design
constraints were chosen to give similar response characteristics (in
terms of damping ratio and undamped natural frequency) to a system
designedwith level 1 handling quality requirements inmind, that is, a
response similar to one that would be acceptable on a manned
aircraft. A more systematic approach [24] might be to define
maximum allowable deviations in x and xmax and then set

Q � diagf1=x2maxg

IV. Continuation Tailoring

Continuation tailoring [25–27] refers here to the use of bifurcation
analysis in the shaping of bifurcation diagrams. Bifurcation diagrams
(as used in this paper) show the variation of fixed points of a dynamic
system (and their local stability) as the continuation parameter � is
varied. Fixed points, or equilibria, are points in state space where all
time derivatives are zero. They are found by solving f�x; �� � 0,
where f is a nonlinear function that describes the aircraft in terms of
the states x and the input parameters � (� is an element of �). A
bifurcation diagram is a two-dimensional projection of equilibria
values of a state variable plotted against the continuation parameter
(a so-called one-parameter bifurcation diagram). In general, for
open-loop systems, there will be multiple equilibria branches (e.g.,
spin steady states). The local stability of the fixed points is indicated
by line type. Figure 3 is a bifurcation diagram in � of the open-loop
model used in Sec. V.A. It shows the effector angle required to trim
the aircraft at each �. The solid line indicates stable equilibria where-
as the dashed line indicates unstable equilibria; the cause of the ins-
tability in the region 10 deg 
 � 
 12 deg is positive pitch stiffness.

In this paper, continuation tailoring specifically involves the
shaping of a closed-loop bifurcation diagram to obtain a required
steady-state relationship between one of the states and the
continuation parameter. This is accomplished by utilizing an extra
control input with the system in question. The ordinary differential
equation (ODE) associated with the state that it prescribes is then

solved for the value of the extra control input pseudocontinuously
across the parameter input range using continuation methods. The
result of this is a variation in the extra control input with the
continuation parameter that moves the state in question to its
prescribed trim value. This is then used as a feedforward (FF) gain
schedule in time simulations to achieve the desired system behavior.
For example, an additional signal (as a function of �) could be
applied to the pitch thrust vectoring input of the open-loop model in
Fig. 3 to modify the relationship between PFact and �. It is seen in
Sec. V that when the gains associated with the CAS integrator are
transformed (for use in a DGS), then the trim values can change
(unless there is full-authority control); additional control inputs
(calculated via continuation tailoring) can be used to return the trim
points to their original values.

In general, controller design using theDGSmethodology involves
the following steps: a) design of a classical gain schedule (CGS);
b) transformation to a dynamic gain schedule to enable scheduling
with a fast-varying state; and c) if the steady states are altered by the
transformation, then a set of gains Kff��� is calculated that can
return the steady state to the original CGS closed-loop equilibrium
position, that is, it provides the additional moments that are required
to shift the equilibrium point. This is done by solving the ODE for a
control effector input Kff instead of the associated state. This
additional signal could go to an effector already in use (as in Fig. 4) or
it could be fed to a previously unused effector (if control effector
redundancy exists).

V. UCAV Application

DGS control is now assessed using three versions of the ICE
model. They have been given numbers for ease of reference and are
defined in Table 1. Each has a full state-feedback stability
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Fig. 3 Open-loop bifurcation diagram with �� PFact.
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Fig. 4 Generic SCAS controller structure �Kff .

Table 1 ICE model version definitions

Aircraft states Actuators CAS Order

version 1 �, q PF �dem 4th
version 2 �, �, p, q, r �yaw, PF, AMTL �dem 9th
version 3 �, �,p, q, r �yaw, PF, AMTL �dem, �dem 10th
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augmentation system (SAS) and at least one outer command loop.
The actuators have been modeled by simple first-order lags of the
form 30=�s� 30� with position saturation limits only.

The closed-loop systems were incorporated into the continuation
software [22] with the gains being calculated directly for each trim
point using LQR. Output feedback controllers are calculated in each
case considered here. It is assumed that all states are either
measurable or can be estimated (and are hence available for
feedback) apart from the actuator position states. Continuation
methods allow trim points to be calculated pseudocontinuously
across a parameter space. At each point, the system is linearized and a
set of controller gains calculated. Hence, trimming and controller
design are done together. This yields a controller that will provide
near optimum control for all trim points throughout the parameter
space. By calculating the controller gains in this way, the underlying
physics of the system can be retained through the bifurcation
diagrams, and it is possible to examine all of the states (including the
controller states) at each trim point.

Continuation methods are the primary tool of bifurcation analysis
that has been used extensively to analyze and modify aircraft
dynamics [15,28–30]. No bifurcations will be present in the closed-
loop work as the command augmentation system will provide a
single stable trim branch throughout the given parameter space,
though these trim maps are still referred to as bifurcation diagrams.

For the purposes of assessing the effectiveness of DGS control,
ideal systems are defined as benchmarks. They are ideal because they
consist of simple transfer functions that have unity gain and the same
roots as the LQR closed-loop system.

A. Fourth-Order Model (Version 1)

Figure 5 shows the first version of the model to be tested. The Q
and R matrices for the runs in this section were

Q �
0 0 0

0 0 0

0 0 20000

2
4

3
5 (45)

R � �1� (46)

The MATLAB lqr routine was used to calculate an optimum
controller of the form u��Kx, where x� ��; q; �int�, pseudo-
continuously across the continuation parameter range.

The bifurcation diagrams for this run are given in Fig. 6. The
continuation parameter limits were defined arbitrarily to be 0 deg 

�dem 
 30 deg to allow a reasonable test range, and this range is
achievable using the pitch flap actuator. The nonlinearity of the
underlying system is indicated by the integrator state variation. Note
that a reduced-order flight mechanics model such as this, where slow
modes are neglected, ignores variation of gravitational loads with
aircraft attitude and results in trims with nonzero pitch rate.

The variation of the static gains with �dem are shown in Fig. 7. The
CAS integrator is invariant with the continuation parameter, and so
only two gains need to be converted; and F-DGS is possible because
these gains are single valued at each �dem and have values at
�dem � 0. Hence, the static gain schedule was transformed to a
F-DGS using the following transformation set:

K� � �� � ��@��=@���� (47)

Kq � �q � ��@�q=@q�q� (48)

The transformed gain variation is plottedwith the original static gains
in Fig. 8. It shows the static and dynamic gains to be equal at certain
points, that is,K���dem� � �����when�� 0 andwhen @��=@�� 0
[as expected from Eq. (19)]. Similarly, it shows that Kq��dem� �
�q�q�whenq� 0 andwhen @�q=@q� 0. Note also that the dynamic
gains are necessarily smoother than the static.

Step inputs were then applied to test the validity of the F-DGS. A
comparison of the response to a step input in �dem of 4 deg (from an
initial trim at �� 11 deg) is shown in Fig. 9. This step input was
chosen to ensure that a highly nonlinear region in the gain variation
with �was encountered (see Fig. 8). The F-DGS response is superior
in terms of both proximity to the ideal response and in terms of the
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much smaller pitch flap actuator movement. There are two ideal
responses shown in Fig. 9 because the stability at the initial trim
condition and that at the endwill be different. In fact, the stability will
be constantly changing, and so it was decided to plot the ideal
responses as defined by the eigenvalues at the pre- and post-step
trims. The F-DGS system response was observed over a number of
trials to be consistently much closer to the ideal ones than to the
parameter-scheduled (static) system.

B. Ninth-Order Model (Version 2)

Figure 10 shows the second version of the model to be tested,
where Ki is a vector of gains �K�i

; K�i
; Kpi

; Kqi
; Kri

� that is
multiplied by the feedback state vector.

The LQR design constraints were chosen to be:

Q �

10000 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 10000 0 0

0 0 0 0 0 0

0 0 0 0 0 40000

2
6666664

3
7777775

(49)

R �
1 0 0

0 1 0

0 0 1

2
4

3
5 (50)

for a control law of the formu��Kx, where x� ��; �; p; q; r; �int�.
Here the Q matrix requires a fast response in �dem and in the
longitudinal short period mode. This was done to reduce the

longitudinal/lateral system coupling, which, in turn, allowed the
ideal system to be identifiedmore easily andmimic the way in which
the eigenstructure assignment was constrained in previous work
[17]. Hence, the elements of the eigenvectors associated with� and q
in the lateral modes are minimal.

Figure 11 shows the bifurcation diagrams for this systemwith�dem

set as the continuation parameter. The �dem range was chosen
arbitrarily so as to allow a fair assessment of the model.

The functions relating trimmed �, p, q, and r to their associated
static feedback gains were not all one-to-one or many-to-one: see
Fig. 12, where the variations in these gains, fed back to their
respective actuators, are plotted with respect to their equilibria
feedback states. A modified transformation set was therefore used to
convert the static gain schedule to an M-DGS, namely

K� � ����� (51)
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K� � ����� � ��@��=@���� � ��@��=@���� � ��@�p=@��p�
� ��@�q=@��q� � ��@�r=@��r� (52)

Kp � �p��� (53)

Kq � �q��� (54)

Kr � �r��� (55)

K�int
� ��int

��int� � ��@��int
=@�int��int� (56)

Although no direct comparisons can be made because the static
gains are optimized for the three-effector system, the reason for the
folds in the gain variations with the feedback states can be explained
by the presence of fold bifurcations in the open-loop system with the
left AMT actuator (AMTLact) as the continuation parameter (as
shown in Fig. 13). The continuation parameter range was chosen to
reflect the movement of AMTLact in the closed-loop system.

Figure 14 compares the variation in the static and dynamic gains
with the associated feedback state. The � subfigures do not conform
to the standard requirement of K� equalling �� for �� 0 and
@��=@�� 0, as there are extra terms in the equation that defines K�

(52). Hence, the gain-smoothing effect is negligible in this case, as
the transformed dynamic gain variations are only slightly smoother
than the original static gains.

The conversion to a dynamic gain, though retaining the
eigenvalues of the system, does in fact altermany of the steady states,
that is, the bifurcation diagram trim branches will change. As the
controllers are only valid at the designed trim points, then the
stability will also change. A comparison of the �-scheduled and
state-scheduled (M-DGS) closed-loop bifurcation diagrams is
shown in Figs. 15 and 16. The steady-state differences are small, up
to �dem � 3 deg, but quickly become significant for large demands.
This byproduct of modified dynamic gain schedule transformation is
addressed in Sec. V.D using continuation tailoring.

C. Tenth-Order Model (Version 3)

The third version of the model to be investigated is identical to the
second (version 2), aside from it having an additional �-demand
outer command loop.

The Q matrix is also the same as the one applied to the control of
the second model, apart from an additional row and column for the
�int state, which consists entirely of zeros, apart from the leading
diagonal�int penalty, which is set at 10,000. TheRmatrix is the same
as that used in the previous section.

The same control law structure is also used, that is, u��Kxwith
x� ��; �; p; q; r; �int; �int�. Hence, the desired controller provides a
good deal of longitudinal/lateral mode decoupling and demands a
sharper response in � than in �. Note that this system is merely an
example for the purpose of demonstrating the gain-scheduling

−5 0 5
10

15

20

25

30

α
, d

eg

−5 0 5
−10

−5

0

5

10

β,
de

g

−5 0 5
−100

−50

0

50

100

p,
de

g/
s

−5 0 5
0

5

10

q,
de

g/
s

−5 5
−50

0

50

AMTLact, deg

r,
de

g/
s

Fig. 13 Open-loop bifurcation diagrams for ��AMTLact (solid line,

stable; dotted line, unstable).

0 2 6 8
−350

−50

β , deg

δ ya
w
ac

tG
ai

n

0 2 6 8
−200

0

β, deg

P
F

ac
tG

ai
n

0 2 6 8
100

350

β , deg

A
M

T
La

ct
G

ai
n

0 2 6 8
80

160

β
int

, deg

δ ya
w
ac

tG
ai

n

0 2 6 8
20

80

β
int

, deg

P
F

ac
tG

ai
n

0 2 6 8
−180

−100

β
int

, deg

A
M

T
La

ct
G

ai
n

Fig. 14 Gains that are fed back to �yawact (solid line,K; dashed line,�).

0 5 10
1

2

3

4

5

α
, d

eg

0 5 10
0

5

10

β,
d e

g

0 5 10
−40

−20

0

20

p,
de

g/
s

β
dem

, deg 0 5 10
−6

−4

−2

0

β
dem

, deg

q,
de

g/
s

static
M-DGS

Fig. 15 M-DGS and�-scheduled system bifurcation diagrams:�,�,p,
and q.

1278 JONES ET AL.



approach that is advocated. In reality, it would be desirable to have
control over roll rate too, via an additional p-demand CAS loop.

Two-parameter trim maps were obtained by setting the �dem input
to a particular value and then holding it constant while a continuation
run was carried out with �dem as the continuation parameter in the
range 0 deg 
 �dem 
 10 deg. This was done for �dem in the range
�5 to 5 deg in steps of 1 deg. Two-parameter trim maps were then
obtained by concatenating the 11 separate runs.A selection of them is
shown in Fig. 17.

Similar plots are possible for the gain variations, but there would
be 21 of them (7 gains going to 3 actuators), and so they are omitted
for brevity. An F-DGS was not possible, as most of the static gain
variations with � (at each �) were neither one-to-one nor many-to-
one functions. Hence, an M-DGS was created by applying the
following transformation set to the gain variationwith�dem at each of
the 11 �dem values and then concatenating the M-DGS:

K���dem; �dem� � ����dem; �� (57)

K���dem; �dem� �����dem; �� � ��@��=@���� � ��@��=@����
� ��@�p=@��p� � ��@�q=@��q� � ��@�r=@��r�
� ��@��int

=@���int� � ��@��int
=@���int� (58)

Kp��dem; �dem� � �p��dem; �� (59)

Kq��dem; �dem� � �q��dem; �� (60)

Kr��dem; �dem� � �r��dem; �� (61)

K�int
��dem; �dem� � ��int

��dem; �� (62)

K�int
��dem; �dem� � ��int

��dem; �� (63)

The pure parameter-scheduled (�dem and �dem) system response is
comparedwith themixedM-DGS/parameter-scheduled (� and�dem)
system response in Fig. 18 by applying a simultaneous step input in
�dem and �dem of 3 and 5 deg, respectively. It shows a comparison of
the system response in the tracked states (i.e., � and �).

Finally, Fig. 19 shows a comparison of the tracked state responses
to a more demanding combination of simultaneous step inputs in
�dem and �dem. Hence, scheduling with two variables (one parameter
and one fast state) is shown to give a better response than scheduling
with two parameters.

D. Continuation Tailoring

Figures 15 and 16 highlight a byproduct of transforming the gain
schedule from parameter-scheduled to either F-DGS or M-DGS. Its
effect only becomes apparent in regions where the two trim curves
(i.e., static and dynamic schedules) are far from each other (such as at
�dem � 10 deg in this figure, which is a fairly extreme demand). The
original gain schedule is calculated for a given set of trim points.
When the transformations are carried out, the eigenstructure of the
system is retained but the trim values are not. As the eigenstructure
only characterizes desired behavior at trims corresponding to the
static schedule design case, this divergence of the trim branches will
therefore result in a change in the desired stability (away from that
which gives an optimum response) at the dynamic gain schedule trim
point.

It is proposed that a feedforward gain scheduleKff (applied to the
system as shown in Fig. 4) be used to retain the values of the trim
states of the system after the static gain schedule has been
transformed to a dynamic one. This compensation schedule is
designed using continuation tailoring. In order that the method be
demonstrated, a slice of the two-parameter gain schedule at �dem �
0 deg in Sec. V.C is considered. Figure 20 compares the �dem-
scheduled system with the M-DGS system at �dem � 0 deg. The
trims are identical in the demanded states � and � but different in all
the other states (of which only p and AMTLact are shown here for
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brevity). The trims are fairly close for �dem 
 6 deg but start to
diverge rapidly with increasing �dem.

If there were a three-axis demand system, for example, qdem, �dem,
and pdem, then the steady states would in practice be identical for all
values in parameter space. More generally, the steady states are only
different when the number of command integrators is less than the
number of unconstrained axes.

The feedforward gain schedule is obtained by solving the _p
equation for the required feedforward gain to give the same trimmed
p as would have been obtained with the static gain schedule within
the continuation design framework. This feedforward gain schedule
is shown in Fig. 21. Hence (as intuitively expected) Kff is relatively
large in the region where the static and dynamic scheduled system
trims are furthest apart.

Figure 22 compares the � response to a step in �dem of 7 deg (i.e.,
a value where the trims are significantly altered by DGS). It also
shows the parameter-scheduled response. The dynamic schedule for
large step inputs where the two trims are vastly different are inferior
unless the feedforward term is used, as the stability is only optimum
for the designed static trim.

Note that the disturbance rejection properties are not recovered by
the addition of the feedforward signal, and so caution must be
exercised if such a controller structure is required. A recommended
implementation of DGSmay therefore only transform the SAS gains
and retain the parameter-scheduled CAS gain to negate the need for
the additional feedforward signal.

V. Conclusion

In this paper a method for scheduling gains against rapidly
changing states has been applied to an unmanned combat air vehicle
model. The dynamic gains were determined directly by applying a
transformation to static gain schedules that were themselves

calculated pseudocontinuously from within a continuation design
framework using linear quadratic regulation.

The method is shown to significantly improve the transient
response for both longitudinal and longitudinal/lateral versions of the
model when stepping between trim conditions.

The problem of control surface position limit saturation has also
been shown to be less likely when a full dynamic gain schedule is
used; this is because the magnitude range of the gains is smaller than
that of the original static gains, as a result of the transformation
process. F-DGS transformation was found to have the additional
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benefit of smoothing the highly nonlinear gain variation. Both of
these advantages are likely but not necessarily realizedwithmodified
DGS. The addition of a feedforward gain schedule was shown to be
necessary when applying DGS to systems without full-authority
integral control.

Although this continuation-based design methodology requires
knowledge of nonlinear systems theory, it retains a strong link to the
underlying physics via the bifurcation diagrams and, hence, gives the
user a much deeper insight into the behavior of both the open and
closed-loop systems than conventional black-box approaches, for
example, the actuator states that are required to trim the aircraft at a
given point provide a measure of the control power expenditure and
availability, the variation of control system integrator states indicates
the extent of system nonlinearities, and the local stability of
linearizations of the nonlinear system can be used to predict global
behavior.

This paper has advanced the method with the addition of modified
static-to-dynamic gain schedule transformations. This allowed its
extension to a longitudinal/lateral aircraft model by proposing a
means of designing dynamic gain schedules when multivalued
behavior arises in nonlinear systems.
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